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Abstract
We present quite a powerful method in investigations of different phenomena
that can appear when neutrinos and electrons propagate in background matter.
This method implies use of exact solutions of modified Dirac equations
that contain the correspondent effective potentials accounting for the matter
influence on particles. For several particular cases the exact solutions of
modified Dirac and Dirac–Pauli equations for a neutrino and an electron in
the background environment of different composition are obtained (the case of
magnetized matter is also considered). Neutrino reflection, trapping, neutrino
pair creation and annihilation in matter and neutrino energy quantization in
a rotating medium are discussed. The neutrino Green functions in matter
are also derived. The two recently proposed mechanisms of electromagnetic
radiation by a neutrino and an electron in matter (the spin light of neutrino
and electron, SLν and SLe) are considered. A possibility to introduce an
effective ‘matter-induced Lorentz force’ acting on a neutrino and an electron is
discussed. A new mechanism of electromagnetic radiation that can be emitted
by an electron moving in the neutrino background with nonzero gradient of
density is predicted.

PACS numbers: 12.20.−m, 13.15.+g

1. Introduction

The problem of particles interactions under an external environment influence, provided by the
presence of external electromagnetic fields or media, is one of the important issues of particle
physics. In addition to possibility for better visualization of fundamental properties of particles
and their interactions being imposed by influence of an external conditions, the interest to this
problem is also stimulated by important applications to description of different processes in
astrophysics and cosmology, where strong electromagnetic fields and dense matter may play
an important role.

1751-8113/08/164047+20$30.00 © 2008 IOP Publishing Ltd Printed in the UK 1
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The aim of this paper is to present a rather powerful method in investigations of different
phenomena that can appear when neutrinos are moving in the background matter [1, 2].
In addition, we also demonstrate how this method can be applied to electrons moving in
background matter [3–7]. The developed new approach [4] establishes a basis for investigation
of different phenomena which can arise when neutrinos and electrons move in dense media,
including those peculiar for astrophysical and cosmological environments.

The method discussed is based on the use of the modified Dirac equations for the
particles wavefunctions, in which the correspondent effective potentials accounting for matter
influence on the particles are included. It is similar to the Furry representation [8] in quantum
electrodynamics, widely used for the description of particles interactions in the presence of
external electromagnetic fields. In this technique, the evolution operator UF (t1, t2), which
determines the matrix element of the process, is represented in the usual form

UF (t1, t2) = T exp

[
− i
∫ t2

t1

jµ(x)Aµ dx

]
, (1)

where Aµ(x) is the quantized part of the potential corresponding to the radiation field, which is
accounted within the perturbation-series techniques. At the same time, the electron (a charged
particle) current is represented in the form

jµ(x) = e

2
[�eγµ,�e], (2)

where �e are the exact solutions of the Dirac equation for the electron in the presence of
external electromagnetic field given by the classical non-quantized potential Aext

µ (x),

{γ µ
(
i∂µ − eAcl

µ (x)
)− me}�e(x) = 0. (3)

Note that within this approach the interaction of charged particles with the external
electromagnetic field is taken into account exactly while the radiation field is allowed for by
perturbation-series expansion techniques. A detailed discussion of the use of this method can
be found in [9]. Many processes with electrons under the influence of external electromagnetic
fields were investigated using this method. In particular, this method was applied [10] for
derivation of an electron dispersion relation in external electromagnetic fields as well as in
studies of the problem of the electron anomalous magnetic moment in external fields (see [11]
for a review).

In section 2.1, we derive the modified Dirac equation for the neutrino wavefunction in
the presence of matter and find its exact solutions including the neutrino energy spectrum
(section 2.2). On this basis we discuss the neutrino reflection, trapping and also neutrino pair
annihilation and creation in matter (section 2.3). In section 2.4, we consider the modified
Dirac equation for the case when neutrino propagates in rotating matter and find that its energy
is quantized very much similar to the electron energy Landau quantization in a magnetic field.
In section 2.5, we consider the Dirac–Pauli equation for a neutrino moving in matter. The
correspondent neutrino energy spectrum, as well as the one of the modified Dirac equation,
can be used for obtaining the correct values for the flavour and helicity neutrino energy
difference in matter (section 2.6). In section 2.7, we use the modified Dirac–Pauli equation
to get neutrino energy spectrum in magnetized and polarized matter. Section 2.8 is devoted
to discussion of the modified Dirac equation for a Majorana neutrino in matter. Neutrino
Green functions, for both Dirac and Majorana cases, are derived in section 3. In section 4,
we apply the developed method of exact solutions of the quantum wave equation to the study
of an electron moving in background matter and found exact solutions of the correspondent
Dirac equation. In section 5, we illustrate how the obtained exact solutions can be used in
studies of different processes in matter. As two examples, we discuss evaluation of quantum
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theory of the spin light of neutrino (SLν) and spin light of electron (SLe) in matter, the two
recently discussed new mechanisms of electromagnetic radiation produced by a neutrino and
an electron moving in matter. A possibility to introduce an effective ‘matter-induced Lorentz
force’ acting on a neutrino and an electron is discussed in conclusions section 6. We also predict
a new mechanism of electromagnetic radiation that can be emitted by an electron moving in
the neutrino background with nonzero gradient of density. The proposed mechanism of the
electromagnetic radiation can be important in physics of neutron stars, gamma-ray bursts and
black holes.

2. Quantum equations for neutrino in matter

2.1. Modified Dirac equation for neutrino in matter

In [1] (see also [2, 3]) we derived the modified Dirac equation for neutrino wavefunction
exactly accounting for the neutrino interaction with matter. Let us consider the case of matter
composed of electrons, neutrons and protons, and also suppose that the neutrino interaction
with background particles is given by the standard model supplied with the singlet right-handed
neutrino. The corresponding addition to the neutrino effective interaction Lagrangian is given
by

�Leff = −f µ

(
ν̄γµ

1 + γ 5

2
ν

)
, f µ =

√
2GF

∑
f =e,p,n

j
µ

f q
(1)
f + λ

µ

f q
(2)
f , (4)

where

q
(1)
f = (I (f )

3L − 2Q(f ) sin2 θW + δef

)
, q

(2)
f = −(I (f )

3L + δef

)
, δef =

{
1 for f = e,

0 for f = n, p.

(5)

Here I
(f )

3L and Q(f ) are, respectively, values of the isospin third components and the electric
charges of matter particles (f = e, n, p). The corresponding currents j

µ

f and polarization
vectors λ

µ

f are

j
µ

f = (nf , nf vf ), λ
µ

f =
(

nf (ζf vf ), nf ζf

√
1 − v2

f +
nf vf (ζf vf )

1 +
√

1 − v2
f

)
, (6)

where θW is the Weinberg angle. In the above formulae (6), nf , vf and ζf (0 � |ζf |2 � 1)

stand, respectively, for the invariant number densities, average speeds and polarization vectors
of the matter components. Using the standard model Lagrangian with the extra term (4), we
derive the modified Dirac equation for the neutrino wavefunction in matter [1],{

iγµ∂µ − 1
2γµ(1 + γ5)f

µ − m
}
�(x) = 0. (7)

This is the most general form of the equation for the neutrino wavefunction in which the
effective potential Vµ = 1

2 (1+γ5)fµ includes both the neutral and charged current interactions
of neutrino with the background particles and which can also account for effects of matter
motion and polarization. It should be mentioned that other modifications of the Dirac equation
were previously used in [12–18] for studies of the neutrino dispersion relations, neutrino mass
generation and neutrino oscillations in the presence of matter.

3



J. Phys. A: Math. Theor. 41 (2008) 164047 A I Studenikin

2.2. Neutrino quantum states in matter

In the further discussion below we consider the case when matter is composed of electrons
and no electromagnetic field is present in the background. We also suppose that the matter is
unpolarized, λµ = 0. Therefore, the term describing the neutrino interaction with the matter
is given by

f µ = G̃F√
2
(n, nv), (8)

where we use the notation G̃F = GF (1 + 4 sin2 θW ).
For the stationary states of equation (7) we get [1]

�(r, t) = e−i(Eεt−pr)u(p, Eε), (9)

where u(p, Eε) is independent on the coordinates and time. Upon the condition that equation
(7) has a non-trivial solution, we arrive to the energy spectrum of a neutrino moving in the
background matter

Eε = εη

√√√√p2

(
1 − sα

m

p

)2

+ m2 + αm, (10)

where we use the notation

α = 1

2
√

2
G̃F

n

m
, (11)

and also introduce the value η = sign
(
1 − sα m

p

)
in order to provide a proper behaviour of

the wavefunction in the hypothetical massless case. The values s = ±1 specify the two
neutrino helicity states, ν+ and ν−. In the relativistic limit the negative-helicity neutrino state
is dominated by the left-handed chiral state (ν− ≈ νL), whereas the positive-helicity state is
dominated by the right-handed chiral state (ν+ ≈ νR). The quantity ε = ±1 splits the solutions
into the two branches that in the limit of the vanishing matter density, α → 0, reproduce the
positive- and negative-frequency solutions, respectively. It is also important to note that the
neutrino energy in the background matter depends on the state of the neutrino longitudinal
polarization, i.e. in the relativistic case the left-handed and right-handed neutrinos with equal
momenta have different energies.

We get the exact solution of the modified Dirac equation in the form [1]

�ε,p,s(r, t) = e−i(Eεt−pr)

2L
3
2

⎛⎜⎜⎜⎜⎜⎜⎝

√
1 + m

Eε−αm

√
1 + s

p3

p

s
√

1 + m
Eε−αm

√
1 − s

p3

p
eiδ

sεη
√

1 − m
Eε−αm

√
1 + s

p3

p

εη
√

1 − m
Eε−αm

√
1 − s

p3

p
eiδ

⎞⎟⎟⎟⎟⎟⎟⎠ , (12)

where the energy Eε is given by (10), L is the normalization length and δ = arctan p2/p1. In
the limit of vanishing density of matter, when α → 0, the wavefunction (12) transforms to the
vacuum solution of the Dirac equation.

Let us now consider in some detail properties of a neutrino energy spectrum (10) in the
background matter that are very important for understanding of the mechanism of the neutrino
spin light phenomena. For the fixed magnitude of the neutrino momentum p there are two
values for the ‘positive sign’ (ε = +1) energies

Es=+1 =

√√√√p2

(
1 − α

m

p

)2

+ m2 + αm, Es=−1 =

√√√√p2

(
1 + α

m

p

)2

+ m2 + αm (13)
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Figure 1. The interface between the vacuum (left-hand side of the picture) and the matter (right-
hand side of the picture) with the corresponding neutrino band-gaps is shown. The parameter
α = α2 > 2.

that determine the positive- and negative-helicity eigenstates, respectively. The energies in
(13) correspond to the particle (neutrino) solutions in the background matter. The two other
values for the energy, corresponding to the negative sign ε = −1, are for the antiparticle
solutions. As usual, by changing the sign of energy, we obtain the values

Ẽ
s=+1 =

√√√√p2

(
1 − α

m

p

)2

+ m2 − αm, Ẽ
s=−1 =

√√√√p2

(
1 + α

m

p

)2

+ m2 − αm (14)

that correspond to the positive- and negative-helicity antineutrino states in the matter. The
neutrino dispersion relations in matter exhibits a very fascinating feature (see also [15, 16]):
the neutrino energy may have a minimum at nonzero momentum. It may also happen that
the neutrino group and phase velocities are oppositely directed. The expressions in (13)
and (14) would reproduce the neutrino dispersion relations of [16], if the contribution of the
neutral-current interaction to the neutrino potential were omitted.

In the general case of matter composed of electrons, neutrons and protons the matter
density parameter α for different neutrino species is

ανe,νµ,ντ
= 1

2
√

2

GF

m
(ne(4 sin2 θW + ) + np(1 − 4 sin2 θW ) − nn), (15)

where  = 1 for the electron neutrino and  = −1 for the muon and tau neutrinos.
Note that on the basis of the obtained energy spectrum (10) the neutrino trapping and

reflection, the neutrino–antineutrino pair annihilation and creation in a medium can be studied
[15, 16, 19–21].

2.3. Neutrino reflection, trapping and neutrino–antineutrino pair annihilation and creation
in matter

Analysis of the obtained energy spectrum (13), (14) enables us to predict some interesting
phenomena that may appear at the interface of the two media with different densities and, in
particular, at the interface between matter and vacuum. Indeed, as it follows from (13) and (14)
(see also [20]), the band-gap for neutrino and antineutrino in matter is displaced with respect to
the vacuum case in neutrino mass and is determined by the condition αm−m � E < αm+m.
For instance, if α = α2 > 2 then there is no band-gap overlapping. This situation is illustrated
in figure 1.

Let us consider first a neutrino moving in the vacuum towards the interface with energy
that falls into the band-gap region in matter. In this case, the neutrino has no chance to survive
in the matter and thus it is reflected from the interface. The same situation is realized for the
antineutrino moving in the matter with energy falling into the band-gap in the vacuum. In this
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case, the antineutrino is trapped by the matter. When the energies of neutrino in the vacuum
or antineutrino in the medium fall into the region between the two band-gaps the effects of the
neutrino–antineutrino annihilation or pair creation may occur (see the first paper of [16, 19–
21]). Indeed, the ‘negative sign’ energy levels in the matter (the right-hand side of figure 1)
have their counterparts in the ‘positive sign’ energy levels in the vacuum (the left-hand side
of figure 1). The neutrino–antineutrino pair creation can be interpreted as a process a particle
state appearance in the ‘positive sign’ energy range accompanied by the appearance of the
hole state in the ‘negative sign’ energy sea. The phenomenon of neutrino–antineutrino pair
creation in the presence of matter is similar to the spontaneous electron–positron pair creation
the electrodynamics according (Klein’s paradox).

2.4. Neutrino quantum states in rotating medium

In this section, we apply our method to a particular case when a neutrino is propagating in a
rotating medium of constant density [22]. Suppose that a neutrino is propagating perpendicular
to uniformly rotating matter composed of neutrons. This can be considered for modelling
of neutrino propagation inside a rotating neutron star. The corresponding modified Dirac
equation for the neutrino wavefunction is given by (7) with the matter potential accounting for
rotation,

f µ = −G(n, nv), v = (ωy, 0, 0), (16)

where G = GF√
2
. Here ω is the angular frequency of matter rotation around the OZ axis, it also

is supposed that the neutrino propagates along the OY axis. For the neutrino wavefunction
components �(x) we get the from the modified Dirac equation (7) a set of equations1,

[i(∂0 − ∂3) + Gn]�1 + [−(i∂1 + ∂2) + Gnωy]�2 = m�3,

[(−i∂1 + ∂2) + Gnωy]�1 + [i(∂0 + ∂3) + Gn]�2 = m�4,

i(∂0 + ∂3)�3 + (i∂1 + ∂2)�4 = m�1,

(i∂1 − ∂2)�3 + i(∂0 − ∂3)�4 = m�2.

(17)

In general case, it is not a trivial task to find solutions of this set of equations.
The problem is reasonably simplified in the limit of a very small neutrino mass, i.e. when

the neutrino mass can be ignored in the left-hand side of (17) with respect to the kinetic and
interaction terms in the right-hand sides of these equations. In this case, two pairs of the
neutrino wavefunction components decouple one from each other and four equations (17)
disintegrate to the two independent sets of two equations, that couple together the neutrino
wavefunction components in pairs, (�1, �2) and (�3, �4).

The second pair of equations (17) does not contain a matter term and is attributed to the
sterile right-handed chiral neutrino state, �R . The corresponding solution can be taken in the
plain-wave form

�R ∼ L− 3
2 exp{i(−p0t + p1x + p2y + p3z)}ψ, (18)

where pµ is the neutrino momentum. Then for the components �3 and �4 we obtain from
(17) the following equations:

(p0 − p3)�3 − (p1 − ip2)�4 = 0,

−(p1 + ip2)�3 + (p0 + p3)�4 = 0.
(19)

1 The chiral representation for Dirac matrixes is used.
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Finally, from (19) for the sterile right-handed neutrino we get

�R = e−ipx

L3/2
√

2p0(p0 − p3)

⎛⎜⎜⎝
0
0

−p1 + ip2

p3 − p0

⎞⎟⎟⎠ , (20)

where px = pµxµ, pµ = (p0, p1, p2, p3) and xµ = (t, x, y, z). This solution, as it should
be, has the vacuum dispersion relation.

In the neutrino mass vanishing limit the first pair of equations (17) corresponds to the
active left-handed neutrino. The form of these equations is similar to the correspondent
equations for a charged particle (e.g., an electron) moving in a constant magnetic field B given
by the potential A = (By, 0, 0) (see, for instance, [9]). To display the analogy, we note that in
our case the matter current components nv play the role of the vector potential A. The existed
analogy between an electron dynamics in an external electromagnetic field and a neutrino
dynamics in background matter is further discussed in the conclusion (section 6).

The solution of the first pair of equations (17) can be taken in the form

�L ∼ 1

L
exp{i(−p0t + p1x + p3z)}ψ(y), (21)

and for the components �1 and �2 of the neutrino wavefunction we obtain from (17) the
following equations:

(p0 + p3 + Gn)�1 − √
ρ

(
∂

∂η
− η

)
�2 = 0,

√
ρ

(
∂

∂η
+ η

)
�1 + (p0 − p3 + Gn)�2 = 0,

(22)

where

η = √
ρ

(
x2 +

p1

ρ

)
, ρ = Gnω. (23)

For the wavefunction we finally get

�L = ρ
1
4 e−ip0t+ip1x+ip3z

L
√

(p0 − p3 + Gn)2 + 2ρN

⎛⎜⎜⎜⎝
(p0 − p3 + Gn) uN(η)

−√
2ρNuN−1(η)

0
0

⎞⎟⎟⎟⎠ , (24)

where uN(η) are Hermite functions of order N. For the energy of the active left-handed neutrino
we get

p0 =
√

p2
3 + 2ρN − Gn, N = 0, 1, 2, . . . . (25)

The energy depends on the neutrino momentum component p3 along the rotation axis of matter
and the quantum number N that determines the magnitude of the neutrino momentum in the
orthogonal plane. For description of antineutrinos one has to consider the ‘negative sign’
energy eigenvalues (see similar discussion in section 2.2). Thus, the energy of an electron
antineutrino in the rotating matter composed of neutrons is given by

p̃0 =
√

p2
3 + 2ρN + Gn, N = 0, 1, 2, . . . . (26)

Obviously, generalization for different other neutrino flavours and matter composition is just
straightforward (see (6) and (15)).
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Thus, it is shown [22] that the transversal motion of an active neutrino and antineutrino
is quantized in moving matter very much like an electron energy is quantized in a constant
magnetic field that corresponds to the relativistic form of the Landau energy levels (see,
for instance, the first book of [9]). Consider again antineutrino. The transversal motion of
momentum is given by

p̃⊥ =
√

2ρN. (27)

The quantum number N determines also the radius of the antineutrino quasi-classical orbit in
matter (it is supposed that N � 1 and p3 = 0),

R =
√

2N

Gnω
. (28)

It follows that antineutrinos can have bound orbits inside a rotating star. To make an estimation
of magnitudes, let us consider a model of a rotating neutron star with radius RNS = 10 km,
matter density n = 1037 cm−3 and angular frequency ω = 2π × 103 s−1. For this set of
parameters, the radius of an antineutrino orbits is less than the typical star radius RNS if
the quantum number N � Nmax = 1010. Therefore, antineutrinos that occupy orbits with
N � 1010 can be bounded inside the star. The scale of the bounded antineutrinos energy
estimated by (26) is of the order p̃0 ∼ 1 eV. It should be underlined that within the quasi-
classical approach the neutrino binding on circular orbits is due to an effective force that is
orthogonal to the particle speed. Note that there is another mechanism of neutrinos binding
inside a neutron star when the effect is produced by a gradient of the matter density [19] (see
also the conclusion).

2.5. Modified Dirac–Pauli equation for neutrino in matter

To derive the quantum equation for a neutrino wavefunction in the background matter we
start with the well-known Dirac–Pauli equation for a neutral fermion with nonzero magnetic
moment. For a massive neutrino moving in an electromagnetic field Fµν this equation is given
by (

iγ µ∂µ − m − µ

2
σµνFµν

)
�(x) = 0, (29)

where m and µ are the neutrino mass and magnetic moment [23] 2, σµν = i/2(γ µγ ν −γ νγ µ).
It is worthwhile to be noted here that equation (29) can be obtained in the linear approximation
over the electromagnetic field from the Dirac–Schwinger equation, which in the case of the
neutrino takes the following form [25]:

(iγ µ∂µ − m)�(x) =
∫

MF (x ′, x)�(x ′) dx ′, (30)

where MF (x ′, x) is the neutrino mass operator in the presence of the external electromagnetic
field.

Recently in a series of our papers [26, 27] (see also [28]) we have developed the quasi-
classical approach to the massive neutrino spin evolution in the presence of external fields and
background matter. In particular, we have shown that the well-known Bargmann–Michel–
Telegdi (BMT) equation [29] of the electrodynamics can be generalized for the case of a
neutrino moving in the background matter and being also under the influence of external
electromagnetic fields. The proposed new equation for a neutrino, which simultaneously

2 For the recent studies of a massive neutrino electromagnetic properties, including discussion on the neutrino
magnetic moment, see [24]
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accounts for the electromagnetic interaction with external fields and also for the weak
interaction with particles of the background matter, was obtained from the BMT equation
by the following substitution of the electromagnetic field tensor Fµν = (E, B):

Fµν → Eµν = Fµν + Gµν, (31)

where the tensor Gµν = (−P, M) accounts for the neutrino interactions with particles of the
environment. The substitution (31) implies that in the presence of matter the magnetic B and
electric E fields are shifted by the vectors M and P, respectively,

B → B + M, E → E − P. (32)

We have also shown [26, 27] how to construct the tensor Gµν with the use of the neutrino
speed, matter speed and matter polarization 4-vectors.

Now let us consider the case of a neutrino moving in matter without any electromagnetic
field in the background. Starting from the Dirac–Pauli equation (29) for a neutrino in
electromagnetic field Fµν , we apply the substitution (31) which now becomes

Fµν → Gµν. (33)

As a result of this substitution, we obtain the quantum equation for the neutrino wavefunction
in the presence of the background matter in the form [30](

iγ µ∂µ − m − µ

2
σµνGµν

)
�(x) = 0 (34)

that can be regarded as the modified Dirac–Pauli equation.
Consider an explicit solution of the obtained equation (34) for the case of an unpolarized

matter composed of only electrons we have

Gµν = G̃F

2
√

2µ
γn

⎛⎜⎜⎝
0 0 0 0
0 0 −β3 β2

0 β3 0 −β1

0 −β2 β1 0

⎞⎟⎟⎠ , γ = (1 − β2)−1/2, (35)

where β = (β1, β2, β3) is the neutrino three-dimensional speed and n denotes the number
density of the background electrons. From (35) and two equations, (29) and (34), it is possible
to see that the term G̃F

2
√

2µ
γ nβ in (34) plays the role of the magnetic field B in (29). The

corresponding neutrino energy spectrum is

E =
√

p2(1 + α2) + m2 − 2αmps, α = 1

2
√

2
G̃F

n

m
. (36)

This expression can be transformed to the form

E =
√

p2 + m2
(

1 − s
αp

m

)2
(37)

that can be obtained from the neutrino vacuum spectrum by the formal shift of the neutrino
mass m → m

(
1 − s

αp

m

)
.

The exact solution of the Dirac–Pauli equation (34) can be obtained in the following form
[30]:

�p,s(r, t) = e−i(Et−pr)

2L
3
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
1 + m−sαp

E

√
1 + s

p3

p

s

√
1 + m−sαp

E

√
1 − s

p3

p
eiδ

s

√
1 − m−sαp

E

√
1 + s

p3

p√
1 − m−sαp

E

√
1 − s

p3

p
eiδ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (38)
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In the limit of vanishing matter density, when α → 0, this wavefunction transforms to the
vacuum solution of the Dirac equation.

The obtained neutrino energy spectrum (36), for not extremely high matter densities
α

pm

E2
0

� 1, yields the correct result for the energy difference �E = E(s = −1) − E(s = +1)

of the two neutrino helicity states

�E ≈ 2mα
p

E0
, (39)

where we use the notation E0 =
√

p2 + m2. Therefore, on the basis of the obtained exact
solution for the neutrino wavefunction in the case of relativistic neutrinos one can derive the
probability of spin oscillations νL ↔ νR in transversal magnetic field with the correct form of
the matter term [31].

2.6. Flavour and helicity neutrino energy difference in matter

Although the neutrino energy spectra correspondent to the modified Dirac and Dirac–Pauli
equations, (7) and (34), are not the same, an equal result given by (39) for the energy difference
�E = E(s = −1) − E(s = +1) of the two neutrino helicity states can be obtained from both
of the spectra in the low matter density or high-energy limit α

pm

E2
0

� 1.

It should be also noted that for the relativistic neutrinos the energy spectrum for the
neutrino helicity states of equation (10) in the low-density limit reproduces the correct energy
values for the neutrino left-handed and right-handed chiral states,

EνL
≈ E(s = −1) ≈ E0 +

G̃F√
2
n, EνR

≈ E(s = −1) ≈ E0, (40)

as it should be for the active left-handed and sterile right-handed neutrino in matter.
We should like to note, that the obtained spectra for the flavour neutrinos of different

helicities in the presence of matter enables one to reproduce the well-known result for the
energy difference of two flavour neutrinos in matter. In order to demonstrate this we expand
the expressions for the relativistic electron and muon neutrino energies (given by (10) for the
Dirac case or by (53) for the Majorana case), over m/p � 1 and get

Es=−1
νe,νµ

≈ E0 + 2ανe,νµ
m. (41)

Then the energy difference for the two active flavour neutrinos is

�E = Es=−1
νe

− Es=−1
νµ

=
√

2GF ne. (42)

Analogously, considering the spin-flavour oscillations νeL
� νµR

, for the corresponding
energy difference we find

�E = Es=−1
νe

− Es=+1
νµ

=
√

2GF

(
ne − 1

2nn

)
. (43)

These equations enable one to get the expressions for the neutrino flavour and spin-flavour
oscillation probabilities with resonance dependence on matter density in the complete
agreement with the results of [31, 32].

2.7. Modified Dirac–Pauli equation in magnetized and polarized matter

It is also possible to generalize the Dirac–Pauli equation (29) (or (34)) for the case when a
neutrino is moving in a magnetized background matter. For this case (i.e., when the effects of
matter and magnetic field on neutrino have to be accounted for simultaneously) the modified
Dirac–Pauli equation is [30]{

iγ µ∂µ − m − µ

2
σµν(Fµν + Gµν)

}
�(x) = 0. (44)
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The neutrino energy in the magnetized matter can be obtained from (36) by the following
redefinition:

α → α′ = α +
µB‖
p

, (45)

where B‖ = (Bp)/p is the longitudinal to the neutrino momentum magnetic field component.
Thus, the neutrino energy in this case reads

E =

√√√√p2 + m2

(
1 − s

αp + µB‖
m

)2

. (46)

For the relativistic neutrinos the expression of equation (37) gives, in the linear approximation
over the matter density and the magnetic field strength, the correct value (see [26–28]) for the
energy difference of the two opposite helicity states in the magnetized matter,

�eff = G̃F√
2
n + 2

µB‖
γ

. (47)

Note that the problem of the neutrino dispersion relation in an external magnetic field and
matter was also studied previously in many papers with use of different methods [34].

Now we can consider the neutrino spin oscillations in the presence of non-moving matter
being under the influence of an arbitrary constant magnetic field B = B‖ + B⊥, here B⊥ is
the transversal to the neutrino momentum component of the external field. In the adiabatic
approximation the probability of the oscillations νL ↔ νR can be written in the form

PνL→νR
(x) = sin2 2θeff sin2 πx

Leff
, sin2 2θeff = E2

eff

E2
eff + �2

eff

, Leff = 2π√
E2

eff + �2
eff

,

(48)

where Eeff = 2µB⊥ (terms ∼ γ −1 are omitted here), and x is the distance travelled by the
neutrino.

Let us now shortly discuss the effect of matter polarization. Consider the case of matter
composed of electrons in the presence of such strong background magnetic field so that the

following condition is valid B >
p2

F

2e
, where pF = √µ2 − m2

e , µ and me are, respectively, the
Fermi momentum, chemical potential and mass of electrons. Then all of the electrons occupy
the lowest Landau level; therefore the matter is completely polarized in the direction opposite
to the unit vector B

B
. From the general expression for the tensor Gµν (see the second paper of

[26]) we get [30]

Gµν = 1

2
√

2µ
γn

⎧⎪⎪⎨⎪⎪⎩G̃F

⎛⎜⎜⎝
0 0 0 0
0 0 −β3 β2

0 β3 0 −β1

0 −β2 β1 0

⎞⎟⎟⎠− GF

⎛⎜⎜⎝
0 −β2 β1 0
β2 0 −β0 0

−β1 β0 0 0
0 0 0 0

⎞⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭ . (49)

Thus, the modified Dirac–Pauli equation (44) with the tensor Gµν given by (49) can be used
for description of the neutrino motion in matter which is magnetized and totally polarized in
respect to the magnetic field vector B direction. The neutrino energy in such a case can be
obtained from (36) by the following redefinition:

α → α̃ = α

⎡⎣1 −
sign

(
B‖
B

)
1 + sin2 4θW

⎤⎦ +
µB‖
p

. (50)
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In equation (50), the second term in brackets accounts for the effect of the matter polarization.
It follows, that the effect of the matter polarization can reasonably change the total matter
contribution to the neutrino energy (46) (see also [33]).

Note that the problem of the neutrino dispersion relation in an external magnetic field and
matter was previously also studied in many papers with use of different methods [34].

2.8. Majorana neutrino

We have considered so far the case of the Dirac neutrino. Now let us turn to the Majorana
neutrino [20]. For a Majorana neutrino we derive the following contribution to the effective
Lagrangian accounting for the interaction with the background medium,

�Leff = −f µ(ν̄γµγ 5ν), (51)

which leads to the Dirac equation

{iγµ∂µ − γµγ5f
µ − m}�(x) = 0. (52)

This equation differs from the one, obtained in the Dirac case, by doubling of the interaction
term and lack of the vector part. The corresponding energy spectrum for equation (52) is

Eε = ε

√√√√p2

(
1 − 2sα

m

p

)2

+ m2. (53)

From this expression it is clear that the energy of the Majorana neutrino has its minimal
value equal to the neutrino mass, E = m. This means that no effects are anticipated for the
Majorana neutrino such as the Dirac neutrino has at the two media interface and which are
discussed above. So that, in particular, there is no Majorana neutrino trapping and reflection
by matter. It should be noted that equation (52) and the Majorana neutrino spectrum in matter
were discussed previously also in [16, 35].

3. Neutrino Green function in matter

The neutrino Green function, along with the wavefunction, is an important characteristic of
the neutrino (propagation) in matter. Developing further the method of the exact solutions
for the studies of the neutrino propagation in matter, we consider explicit Green functions for
the modified Dirac equation for the Dirac and Majorana neutrinos [36]. For the Dirac and
Majorana neutrino Green functions we obtain the same equations as for the correspondent
wavefunctions, (7) and (52), with the only difference that −δ(x) functions stay on the right-
hand sides. In the momentum representation the equation for the Green function has the
following form:{

iγµ∂µ − 1
2γµ(a + γ5)f

µ − m
}
G(p) = −1, (54)

where a = 1 for the Dirac neutrino and a = 0 for the Majorana case. Squaring the left-
hand side operator, it is possible to obtain the following expression for the Green function of
neutrino in matter:

G(q) = −(q2 − m2)(q̂ + m) + f̂ (q̂ − m)PL(q̂ + m) − f 2q̂PL + 2(f q)PR(q̂ + m)

(q2 − m2)2 − 2(f q)(q2 − m2) + f 2q2
, (55)

where

q = p − 1
2 (a − 1)f, q̂ = qµγ µ, q2 = qµqµ,

f̂ = fµγ µ, (f q) = fµqµ, PL,R = 1
2 (1 ± γ5).

(56)
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Now let us consider the denominator of expression (55). The poles of the Green function
determine the neutrino dispersion relation. Equating the denominator to zero, we obtain
quadratic equation relative to q0,

(q2 − m2)2 − 2(f q)(q2 − m2) + f 2q2 = 0. (57)

In some special cases equation (57) can be solved analytically. One of such cases is that of
uniform medium, moving at constant speed v parallel to the neutrino momentum p. In this
case, we can solve equation (57) for q0 and then find p0,

p0 = 1

2

⎡⎢⎣af0 + s| f| + ε

√√√√4m2 +

(
2| p − 1

2
(a − 1) f| − s(f0 + s| f|)

)2
⎤⎥⎦ . (58)

There are four solutions of (58) correspondent to s = ±1 and ε = ±1. From equation (58)
one can find that all solutions except one are of definite sign for any |p|. The sign of p0 for
ε = −1 and s = 1 however can be both positive and negative for different |p|. One can also
note that in case of

af0 + | f | < 2m, (59)

the sign of this p0 is always negative.
In case condition equation (59) holds, the solution of equations (7) and (52) can be

expressed in the form of the superposition of plane waves each with a definite sign of energy.
Note that if condition (59) is violated then there exists a plane wave that has positive energy
for some |p| and negative for others. Stated in other words, condition (59) means that Green
function (55) can be chosen causal by imposing special rules of poles bypassing (negative
poles should be bypassed from below and positive poles should be bypassed from above).
Once we have got the causal Green function the perturbation technique can be developed for
the description of the neutrino propagation in matter.

Another way to interpret condition (59) is to turn attention to [20] where it was shown,
that for the matter at rest, the spontaneous νν̃ pair creation can take place only when f0 > 2m.
From the analysis of the allowed energy zones for neutrino in matter it follows that νν̃ pair
creation in moving matter can take place only when af0 + |f| > 2m. So that the possibility
of using the neutrino Green function (55) is limited by the particular value of matter density
when νν̃ pair creation processes become available.

For the Majorana neutrino moving through uniform matter at rest, condition (59) is always
valid for any matter densities f0 because a = 0 and f = 0 in this case.

4. Electron wavefunction and energy spectrum in matter

In [3, 5–7], it has been shown how the approach, developed at first for description of a neutrino
motion in the background matter, can be spread for the case of an electron propagating in
matter.

Let us consider an electron having the standard model interactions with particles of
electrically neutral matter composed of neutrons, electrons and protons. This can be used
for modelling a real situation which existed, for instance, when electrons move in different
astrophysical environments. We suppose that there is a macroscopic amount of the background
particles in the scale of an electron de Broglie wavelength. To further simplify the model, we
consider the case of nuclear matter [21, 37] composed of neutrons. Then the addition to the
electron effective interaction Lagrangian is

�L
(e)
eff = −f µ

(
ēγµ

1 − 4 sin2 θW + γ 5

2
e

)
, (60)
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where the explicit form of f µ depends on the background particles density, speed and
polarization and is determined by (4) and (5). The modified Dirac equation for the electron
wavefunction in matter is [3]{

iγµ∂µ − 1
2γµ(1 − 4 sin2 θW + γ5)f̃

µ − me

}
�e(x) = 0, (61)

where for the case of an electron moving in the background of neutrons

f̃
µ = −f µ = GF√

2

(
jµ
n − λµ

n

)
. (62)

We consider below unpolarized neutrons so that

f̃ µ = GF√
2
(nn, nnv), (63)

here nn is the neutrons number density and v is the speed of the reference frame in which the
mean momentum of the neutrons is zero. The corresponding electron energy spectrum in the
case of unpolarized matter at rest is given by

E(e)
ε = εηe

√
p2

(
1 − seαn

me

p

)2

+ me
2 + cαnme, αn = 1

2
√

2
GF

nn

me

, (64)

where c = 1−4 sin2 θW , ηe = sign
(
1−sαn

me

p

)
,me and p are the electron mass and momentum.

For the wavefunction of the electron moving in nuclear matter we get [5–7]

�ε,p,s(r, t) = e−i(E(e)
ε t−pr)

2L
3
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
1 + me

E
(e)
ε −cαnme

√
1 + s

p3

p

s
√

1 + me

E
(e)
ε −cαnme

√
1 − s

p3

p
eiδ

sεηe

√
1 − me

E
(e)
ε −cαnme

√
1 + s

p3

p

εηe

√
1 − me

E
(e)
ε −cαnme

√
1 − s

p3

p
eiδ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (65)

The exact solutions of this equation open a new method for investigation of different quantum
processes which can appear when electrons propagate in matter.

5. Neutrino and electron spin light in matter

In this section, we illustrate how the developed method based on the use of the exact solutions
of the modified Dirac equations for neutrino and electron wavefunctions can be used in the
study of different phenomena that arise when a neutrino or electron move in matter. As an
example, we discuss below the spin light of neutrino (SLν) and the spin light of electron
(SLe), new types of electromagnetic radiation that can be produced by the Dirac particles
while moving in the background matter. The spin light of neutrino in matter, one of the four
new phenomena studied in our recent papers (see for a short review [38]), is an electromagnetic
radiation that can be emitted by a massive neutrino (due to its nonzero magnetic moment)
when the particle moves in the background matter. Within the quasi-classical treatment the
existence of the SLν was first proposed and studied in [39], while the quantum theory of this
phenomenon was developed in [1–3, 20, 30, 28, 40]. The spin light of electron in matter
[3, 5–7] also originates from the particle magnetic moment procession in matter. Note that
the term ‘spin light of electron’ was used first in [41] for designation of the particular spin-
dependent contribution to the electron synchrotron radiation power. It should be stressed that
SLν and SLe in matter are really new mechanisms of electromagnetic radiation of quite a
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Figure 2. The SLν and SLe radiation diagram.

different nature than ones considered before including the Cherenkov radiation of particles in
medium. In particular, the spin light processes may proceed even when the photon refractive
index in matter equals to nγ = 1.

The corresponding Feynman diagram of these processes is shown in figure 2.
The particles initial ψi and final ψf states (shown by ‘broad lines’) are exact solutions of
the corresponding Dirac equations for the neutrino and electron in matter that account for the
particles interaction with matter. The amplitude of the SLν process is given by

Sf i = −µ
√

4π

∫
d4xψ̄f (x)(�̂ e∗)

eikx

√
2ωL3

ψi(x), �̂ = iω{[ � × �] + iγ 5 �}, (66)

where µ is the neutrino magnetic moment, kµ = (ω, k) and e∗ are the photon momentum
and polarization vectors, � = k/ω is the unit vector pointing in the possible direction of the
emitted photon propagation. The amplitude of the process SLe is given by

Sf i = −ie
√

4π

∫
d4xψ̄f (x)(γ µe∗

µ)
eikx

√
2ωL3

ψi(x), (67)

where −e is the electron charge. The further evaluation of the SLν and SLe characteristics
of the processes, such as the differential and total rates and powers, angular distributions etc,
can be found in the above-mentioned papers. From the energy–momentum conservation in
the SLν and SLe processes we obtain the following values for the spin light radiation energy:

ωSL = 2αnmlp[Ẽ − (p + αnml) cos θSL]

(Ẽ − p cos θSL)2 − (αnml)2
, Ẽ = E − cαnml, αn = 1

2
√

2
GF

nn

ml

,

(68)

where θSL is the angle between possible directions of the radiation and the initial particle
momentum p, for the case of neutrinos ml = mν and cl = cν = 1, whereas for electrons
ml = me and cl = ce = 1−4 sin2 θW . From (68) it follows that for the relativistic particles and
a wide range of matter densities (that can be found in diverse astrophysical and cosmological
environments) the energy range of SLν and SLe may even extend up to energies peculiar to
the spectrum of gamma rays (see also [1, 3]).

For the rate of SLν in the case of ultra-relativistic neutrinos (p � m) we obtained [1, 2]

�SLν = 4µ2α2m2
νp, mν/p � α � p/mν, (69)

where the matter density parameter α is given by (15); in case of negative α, SLν can be emitted
by antineutrino. The main properties of SLν investigated in [1, 2, 39] can be summarized
as follows [42]: (1) a neutrino with nonzero mass and magnetic moment when moving in
dense matter can emit spin light; (2) in general, SLν in matter is due to the dependence
of the neutrino dispersion relation in matter on the neutrino helicity; (3) the SLν radiation
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rate and power depend on the neutrino magnetic moment and energy, and also on the matter
density; (4) the matter density parameter α, that depends on the type of neutrino and matter
composition, can be negative; therefore, the types of initial and final neutrino (and antineutrino)
states, conversion between which can effectively produce the SLν radiation, are determined
by the matter composition; (5) SLν in matter leads to the neutrino-spin polarization effect;
depending on the type of the initial neutrino (or antineutrino) and matter composition the
negative-helicity relativistic neutrino (the left-handed neutrino νL) is converted to the positive-
helicity neutrino (the right-handed neutrino νR) or vice versa; (6) the obtained expressions
for the SLν radiation rate and power exhibit non-trivial dependence on the density of matter
and on the initial neutrino energy; the SLν radiation rate and power are proportional to the
neutrino magnetic moment squared which is, in general, a small value and also on the neutrino
energy, that is why the radiation discussed can be effectively produced only in the case of
ultra-relativistic neutrinos; (7) for a wide range of matter densities the radiation is beamed
along the neutrino momentum, however the actual shape of the radiation spatial distribution
may vary from projector-like to cap-like, depending on the neutrino momentum-to-mass ratio
and the matter density; (8) in a wide range of matter densities the SLν radiation is characterized
by total circular polarization; (9) the emitted photon energy is also essentially dependent on
the neutrino energy and matter density; in particular, in the most interesting for possible
astrophysical and cosmology applications case of ultra-high-energy neutrinos, the average
energy of the SLν photons is one third of the neutrino momentum. Considering the listed
above properties of SLν in matter, we argue that this radiation can be produced by high-energy
neutrinos propagating in different astrophysical and cosmological environments.

A remark on the possibility for Majorana neutrino to emit the spin light in matter should be
made. Obviously, due to the absence of the magnetic moment, such radiation is not expected
in this case. However, considering the transition between two neutrinos of different flavour, it
is possible to produce an analogous effect via the transition magnetic moment, that Majorana
neutrinos can posses.

Performing the detailed study of SLe in neutron matter [43] we have found for the total
rate

�SLe = e2m2
e

/
(2p)[ln(4αnp/me) − 3/2], me/p � αn � p/me, (70)

where it is supposed that ln 4αnp

me
� 1. It was also found that the relativistic electrons can

loose nearly the whole of its initial energy due to the SLe mechanism.
It should be noted that discussion on possible impact of the background plasma on the SLν

radiation mechanism have been started in [2]. Then effects of plasma for SLν and SLe were
considered by other authors in [44]. These authors, after we explained in [42] that their first
conclusion that in the presence of matter the process ‘νL → νR +γ ∗ is kinematically forbidden’
was wrong, obtained the SLν rate with account for the photon dispersion in plasma. In the
case of ultra-high-energy neutrino (i.e., in the only case when the time scale of the process can
be much less than the age of the universe) the SLν rate of [44] exactly reproduces our result
(69) obtained in [1, 2]. The final result for the SLe total rate in the second paper of [44] in the
leading logarithmic term confirms our result (70) obtained in [43].

6. Conclusion

We have considered a framework for treating different interactions of neutrinos and electrons
in the presence of matter. The method developed is based on use of exact solutions of modified
Dirac equations that include correspondent matter potentials. It has been demonstrated how
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this method works in consideration of different quantum processes that can proceed in presence
of matter.

Finally, let us consider the established, in sections 2.4 and 2.5, analogy between particles
dynamics in the presence of electromagnetic fields and dynamics in matter. The developed
semiclassical approach to description of the matter effect, driven by (electro)weak forces, is
valid as long as interactions of particles with the background is coherent. This condition is
satisfied when a macroscopic amount of the background particles are confined within the scale
of a neutrino or electron de Broglie wavelength. For the relativistic neutrinos or electrons
the following condition should be satisfied n

γlm
3
l

� 1, where n is the number density of

matter, γl = El

ml
and (l = ν or e). In case of varying density of the background matter,

there is an additional condition for applicability of the approach developed (see, for instance,
[19, 27, 45]). The variation scale of matter density should be much larger than the de Broglie
wavelength,

∣∣∇n
np

∣∣� 1.
We can further develop the established in section 2.5 analogy between a neutrino motion

in a rotating matter and an electron motion in a magnetic field. It is possible to explain the
neutrino quasiclassical circular orbits as a result of action of the attractive central force

F(ν)
m = q(ν)

m β × Bm, Bm = ∇ × Am, Am = nv, (71)

where the effective neutrino ‘charge’ in matter (composed of neutrons in the discussed case)
is q(ν)

m = −G, whereas Bm and Am play the roles of effective ‘magnetic’ field and the
correspondent ‘vector potential’. Like the magnetic part of the Lorentz force, F(ν)

m is orthogonal
to the neutrino speed β.

It is possible to generalize the above-discussed description of the matter effect on neutrinos
for the case when the matter density n is not constant. For the most general case the ‘matter-
induced Lorentz force’ is given by

F(ν)
m = q(ν)

m Em + q(ν)
m β × Bm, (72)

where the effective ‘electric’ and ‘magnetic’ fields are, respectively,

Em = −∇n − v
∂n

∂t
− n

∂v
∂t

(73)

and

Bm = n∇ × v − v × ∇n. (74)

Using (4) and (5) (see also (15)) these expressions can be generalized for a background
composed of different matter species. The force acting on a neutrino, produced by the first
term of the effective ‘electric’ field in the neutron matter, was considered in [19]. Note that
the same quasiclassical treatment of a neutrino motion in the electron plasma was considered
in [45].

To conclude, we argue that it is also possible to introduce the ‘matter-induced Lorentz
force’ for an electron moving in background matter. The weak forces acting on a neutrino and
an electron in matter are identical. Therefore, similar to the case of neutrino, we can write for
the force acting on an electron F(e)

m in background matter

F(e)
m = q(e)

m Em + q(e)
m β × Bm, (75)

where appropriate magnitude for the effective electron ‘charge’ in matter q(e)
m should be used.

As it follows from (73) and (75), an accelerating force acts on an electron when it moves in
background matter with nonvanishing gradient of density. Using this observation, we should
like to discuss a new mechanism of electromagnetic radiation by an electron moving in the
neutrino background (m = ν) with non-zero gradient of its density. This situation can be
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realized in different astrophysical and cosmology settings. For instance, this phenomenon can
exist when an electron propagates in the radial direction from a compact star object inside a
dense environment composed predominantly of neutrinos that also move in the radial direction
after they are emitted from a central part of the star. In this case, that total power of the radiation
(in the quasiclassical limit) is given by

I = 2

3
q(e)

ν

[
a2

(1 − β2)2
+

(aβ)2

(1 − β2)3

]
, (76)

where β is the electron speed and a is the electron acceleration induced by the gradient of the
neutrino background density. We expect that the proposed mechanism of the electromagnetic
radiation can be important in other astrophysics settings like one that can be realised in neutron
stars, gamma-ray bursts and black holes.
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